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The F18 HARV is a modified FI8 aircraft which is capable of [lying in the post-stall regime in order to

achieve superagility. The onset of aerodynamic stall, and continued into the post-stall region, is characterized

by nonlinearities in the aerodynamic coefficients. These aerodynamic coefficients are not expressed as analytic

functions, but rather in the form of tabular data. The nonlinearities in the aerodynamic coefficients yield a
nonlinear model of the aircraft's dynamics. Nonlinear system theory has made many advances, but this area

is not sufficiently developed to allow its application to this problem, as many of the theorems are existance
theorems and that the systems are composed of analyti_functions. Thus, the feedback matrices and the

state estimators are obtained from linear system theory techlfiques. It is important, in order to obtain the

correct feedback matrices and state estimators, that the linear description of the nonlinear flight dynamics
be as accurate as possible.

The nonlinear simulation is run under the Advanced Continuous Simulation Language (ACSL). The
ACSL simulation uses FORTRAN subroutines to interface to the 10ok-up tables for the aerodynamic data.

ACSL has commands to form the linear representation for the system. This is a two step process. The

first step is to trim the system, which is identical to trinmfing the aircraft. This involves calculating the

trim input, u*, for a given trim state, x*, such that the derivatiLves _the state vector, _, are zero. The
state space for the simulation is x = (u, w, q, 0) T The second st_dp_is to calculate the Jaeobians of the state

transisiton map, f(x) with respect to x at x*, and the inl)ut m'_,'g(x, u) with respect to u at x* and u*.

For analytic functions this is accomplished by calculating the partial derivatives of the functions, but since
analytic functions do not exist, and ACSL can not perform symbolic calculations, the Jaeobians are formed

by numeric differentiation. ACSL uses the central difference method to perform the numeric differentiation.

of (x) i.=,.=/,(x" +  jaj) - f (x" - 6ia )
Oxj 26j (1)

Where the perturbation vector is defined as _ -- (Uco.s(t_)/lO0, Usin(ot)/lOO, 5°/s,2°) T. This is used to
calculate the A matrix for the linear representation, _ = A_ + Bfi with _ = x - x* and fi = u- u*.

Similarly the B matrix is calculated by the numerical differentiation of g(.). The result of this is that the A
and B matrices are not only filnctions of x* and u*, but also of 6.

The state transition map, f(x), and the input map g(x, u), are derived from the equations of motion
for the system. A predominant part of these equations are b_ed on the aerodynamic forces and moments.

These forces and moments are calculated via the standard methods by using a nondimensional coefficient.

These coefficients are the results of wind tunnel testing and they are stored in data files. The data points
are generally functions of two variables, a and Mach number. Occasionally, a third variable is added such

as control surface deflection. For this work, empht_sis was placed on the a-Mach space variables. There are

different sets of _ vaules and Mach number values at which the coefficients are known. For example, Cmo

are known for a E {-12,-4,-2, 0.,...} and Mach number E {0.2,0.6, 0.8, 0.85 .... } but Cm, are known for
a E {-4., 0., 4.,...} and Math number E {0.2,0.6, 0.8, 0.9 .... }. _Ib calculate the particular coefficient, with

a and Mach number either equal or not equal to values in the respective sets, a second order Lagrange

interpolation is performed. If the desired u and M are both equal to elements in the respective sets, then

the Lagrange interpolation yields the coefficient from the table. This is accomplished first by bracketting
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tile o_ and Mach mnnl)er, M, I)etwecn availihh" "i and Mj, s_,cl, that oi < c_ _< (_i+1 and Mj < M < Mj+x.
Letting A_v =cri+l - _ri and AM = Mj+1 -- M#, and ( 'i i I)<. I,I1(. coellicicnt C at. c*i and Mj, the following
expression yeilds (7(+_, M).

C(++, M) = (.'i.+(,+++_ - ,,_)(M:j+t - M) + ('<j+.,(,,++t - +)(M - M j)+
A_AAI

_,'_+_,j(. - ,,_)( M_+_ - at) + ('_+t,j+_ (,_ - cq)( M - M_ )
A.AM (2)

It cau be seen fi'ou! the form of Eq. 2 tl,at, for a ('OllStalll. <1or M, l,he plot tbr the resulting one variable function

C(.) is a series of couuect.ed straight line scgmeul.s. (rah'ulat.i<,n <)f the various aerodynamic coefficients, not

including coelIicients in +k, and sum,oat.ion lute the total ['_)rce and mo,lwnt calculation are perform by the
FORTRAN subroutine SI"AI';RJ_F. SI"AEI{ItI"-takes into account the various sets of cr and M that are
availible.

When the system is lim'arized about some trim point and the eigenvalues are compared to those of

the DMS si,nulation, some dilfi_reuces arise. The eigenwtlues also exhibited a dependence on 6. With the

need for accurate linear represeutatiotm for the system, the following work addressed the problem of how to
minin|ize the differences of the. two sysl,elllS.

l)ue to the dependence on the perturba.l.ion size, <',, in the uunmrical calculation of the Jacobian, elim-

ination of the numerical diffe,'cntiatiou wouhl add,'<,ss this problem and possibly assist in minimizing the
dill'erences I)('tween the l.wo tuoth.ls. The co,wel)t was l.o <,xpress the tabular data in a known functional

form, that could have its derivatiw, calculated at|alytically by a I"OI{TItAN subroutine. Various possible

fimctional forms were examined, such ms I.h<" fourth order I,agrange, full order Lagrange, and quadratic,
cubic, quartic splines. These functions were (:1 or greater ov<,r the entire or-Math space, being at least C 1 on

the boundaries of differe,lt t+-Mach <'ells. The full ordt,r I,agrange interpolation and the various splines pro-

duced oscillations that were not desiral)le. '1'11<'fourth ord<+r Lagrange interpolation required a data window,

which dew, loped discontitmities in the derivativ<,s at tl,<. wiudow boundaries. Applying these techniques to
the many data tables during each iteratiou wouhl Iw. COl/q)ut._'r intensive, and discontinuities would still exist
in the deriwttiw_s on the cell I)om,hu'i<,s.

A,i inl,<+rnmdial.+, apl)roach has be<m followed. Nun,,'ri<'al di[rereutiatiou has been retained with a larger

p<:rt,urbation step size, and the data space for "sparc<'ly" dist,'il)uted data has been augmented. The larger
perturbatiou step size is opposite to the expected limit in calculating a derivative. The use of the increased

perturbation size has the etl'ecl, of decreasing the magnitude of the second derivative of the particular coeffi-

cient. The perturbation step size has been set. equal 1.o one half of the minimum parameter step size, in this
study 6,_ = 1°. The t_ I)e,'turl)ation which is useful for Ol),'ratio.s with the aerodynamic data space, but _ is

not a stat< +space va.rial)le but it. is related to the state varial)h+ w. A function _Sw= f(/_o) was calculated and

included i1! the formulation of the linear model. The augmeld, illg of the data space also provides the for the

minimization of the second <leriwttiw,. The data space is ;ulgltmld,ed by calculating intermediate values for

the partictdar coellicient by usiug a fourt,h order Lagrauge iuterpolatiol_. For example for a function of one

variable delhwd at +r : 0,4,8, 12 ..... a value of the f_,.cl+ion can be estimated at (+ = 2, 6, 10,... by using
the m+arest four data points.

These techniques have been al)l)lied in a staged way l.o the ACSL simulation. The modified perturbation
step size was api)lied to the li,warization of the systet,, as w_'re the unmodified perturbation step size. Then

the data for C',,,_ was augnmnted by using the fourth order Lagrange interpolation for intermediate data

l)oiuts iu tx. Nine dilferent +r values were set, and the longitudinal eigenvalues were calculated by each of the

three lnethods at each (_. The (liffe.retwes I)etween the various longitudinal eigenvalues were small, except
for two cases. The locus of tim eig('nwdues, a.s a functio,! of +_ was generated as a result of this work.
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